
V&V of ISHM Software for Space Exploration

Lawrence Markosian, QSS Group, Inc./NASA Ames Research Center
Martin S. Feather, Jet Propulsion Laboratory, California Institute of Technology

David Brinza, Jet Propulsion Laboratory, California Institute of Technology
Fernando Figueroa, NASA Stennis Space Center

NASA has established a far-reaching and long-term program for robotic and

manned exploration of the solar system, beginning with missions to the moon and Mars.
Integrated System Health Management (ISHM) will be key to improving the reliability,
operability and maintainability of many of the systems deployed in this endeavor.

The requirements of the ISHM systems themselves will be subject to requisite
levels of Verification and Validation (V&V) and certification. The factors that most
influence ISHM’s V&V and certification needs stem from two main sources – the system
of which ISHM is a part, and the implementation of ISHM itself. The system of which
ISHM is a part levies requirements on ISHM – for example, the need for ISHM to
respond within a given time period with a stipulated level of confidence in the correctness
of its response. These externally imposed requirements have far reaching implications for
V&V and certification of ISHM. The combination of these requirements, coupled with
the manner in which ISHM will be utilized, drive much of the V&V and certification
process. Also highly influential is the nature of the ISHM implementation. Often it takes
a combination of techniques to implement an ISHM system. These techniques include
well-understood algorithms for low-level data analysis, validation and reporting;
traditional capabilities for fault detection, isolation and recovery; and, at the more novel
end, AI techniques for state estimation and planning. Detailed descriptions of these
techniques are beyond the scope of this paper, and may be found elsewhere. Here we
focus on their ramifications for V&V and certification. In particular, this range of
techniques that will be utilized within an overall ISHM system impose internal
challenges to V&V.

The conjunction of these externally and internally influences on ISHM V&V and
certification, and the challenges that stem from them, is the focus of this paper. We
outline existing V&V approaches and analogs in other software application areas, and
possible new approaches to the V&V challenges for space exploration ISHM.

1 EXISTING SOFTWARE V&V AND CERTIFICATION
PRACTICES

There are many areas other than NASA where embedded systems exhibit a safety
critical role, for example Avionics, Defense, Medical Devices, Nuclear Power, and
Transportation. In this section we begin by looking at existing V&V and certification
practices as seen in a representative one of these areas, Avionics. This area has many
parallels to the safety- and mission-critical needs that predominate in NASA’s space
activities. We then suggest that the existing NASA hierarchy of requirements, policies,
standards and procedures relevant to software have close parallels with those seen in the
other safety critical areas.

1.1 Avionics V&V and Certification
Safety-critical software for commercial aircraft undergoes certification by the

FAA, which includes V&V in accordance with RTCA/DO-178B. This document is
recognized as the means for evaluating software for compliance with the relevant Federal
Aviation Regulations/Joint Aviation Regulations (FARs/JARs) for embedded systems in
commercial aircraft. A useful paper providing interpretation of RTCA/DO-178B was
prepared by a Boeing participant in the RTCA committee responsible for DO-187B. The
paper describes the intent and rationale of DO-178B. The derivation of the software
approval guidelines from the Federal Aviation Regulations (FARs) to DO-178B is
discussed in the paper to clarify its relationship to the government regulations. An
explanation of the Designated Engineering Representative (DER) system is also provided
in the paper along with a discussion of the safety process to describe the environment in
which DO-178B is used.

The DO-178B/ED-12B Software Verification Process defines specific verification
objectives that must be satisfied; these include:

a. Verification of software development processes,
b. Review of software development life cycle data,
c. Functional Verification of software

i. Requirements-based testing and analysis
ii. Robustness testing

d. Structural Coverage Analysis
Verification of the software development processes is accomplished by a

combination of reviews and analyses. For software requirements, these include reviews
of the quality of the requirements themselves, a requirements trace from system-level to
low-level (code), and checks of their compatibility with the hardware; verifiability;
conformance with standards; accuracy, correctness and behavior of algorithms. The
software architecture is reviewed and analyzed for compatibility with the high-level
requirements and target hardware. Conformance of the software architecture to standards,
verifiability, consistency and portioning integrity is also reviewed. The source code is
also subjected to compliance and traceability to requirements. Conformance of the source
code to standards, code verifiability, accuracy and consistency are also reviewed and
analyzed. The integration process is verified by examination of the data and memory
maps (detect memory overlaps or missing components).

DO-178B section 11 stipulates a number of data requirements: plans, standards,
procedures, and products (including the source code and executable code) that document
this certification. These are:

Plan for Software Aspects of Certification
Software Development Plan
Software Verification Plan
Software Configuration Management Plan
Software Quality Assurance Plan
Software Quality Assurance Plan
Software Requirements Standards
Software Design Standards
Software Code Standards
Software Requirements Data

Software Design Description
Source Code
Executable Object Code
Software Verification Cases and Procedures
Software Verification Results
Software Life Cycle Environment Configuration Index
Software Configuration Index
Problem Reports
Software Configuration Management Records
Software Quality Assurance Records
Software Accomplishment Summary

The review of software development life cycle data includes assessment of the

test results, configuration management and quality assurance aspects for the development.
The testing portion, due to its complexity is described in detail below. The control of the
configuration of the software, including identification of configuration items,
establishment of configuration item baselines, change control data, traceability
throughout the development cycle is reviewed and analyzed. Problem reporting, tracking
and corrective action records are reviewed for adequacy and verification of the change is
confirmed via examination of configuration records. The software quality assurance
records are reviewed to provide confidence that the software life cycle processes have
been followed and that deficiencies encountered in the life cycle are detected, evaluated,
tracked and resolved.

Functional verification of the software is performed at three levels. (1)

Hardware/software integration testing is performed to verify the correct operation of the
software in the target computer environment. (2) Software integration testing verifies the
interrelationships between software requirements and components and the
implementation of the software components within the architecture. (3) The low-level
testing verifies the implementation of software low-level requirements. These
requirements-based tests are performed to verify correct functionality of the software in
both normal range test cases and in robustness test cases. The normal case tests utilize
valid and boundary values for inputs and exercises the transitions possible in normal
operation. The robustness test cases inject invalid input values, values that would
generate arithmetic overflows or attempt to provoke transitions that are not allowed. The
software should follow expected behavior for the abnormal cases.

Structural coverage analysis is generally perceived to be the most difficult task

to undertake in the testing process. Furthermore, certifying real-time executable code
with an operating system that is tightly integrated with the hardware, cache, interrupts,
memory management, and process/task management, can make structural testing even
more difficult. These low-level aspects create a significant challenge to the verification
process. Three primary levels of structural testing are invoked according to the criticality
level of the software (Table 2) in DO-178B certifications:

• Statement Coverage (SC): Every statement in the program has been invoked
or used at least once. This is the most common use of the term “code
coverage.”

• Decision Coverage (DC): Every point of entry and exit in the program has
been invoked at least once and that each decision in the program has been
taken on all possible (Boolean) outcomes at least once. Essentially, this means
that every Boolean statement has been evaluated both TRUE and FALSE.

• Modified Condition Decision Coverage(MCDC): Every point of entry and
exit in the program has been invoked at least once, that every decision in the
program has taken all possible outcomes at least once, and that each condition
in a decision has been shown to independently affect that decision's outcome.
Complex Booleans need to have truth tables developed to set each variable
(inside a Boolean expression) to both TRUE and FALSE.

In DO-178B terms, software has a criticality level, ranging from the most critical
(“Level A), down to “Level E”. Level A software requires all three levels of structural
testing be performed.

Performing this code coverage exercise is possible using manual methods, but this
process is now readily facilitated by utilizing commercial code coverage tools. Numerous
code coverage tool vendors now supply testing tools that create the appropriate test
outputs to demonstrate and satisfy compliance with DO-178B.

1.2 NASA Requirements, Policies, Standards and Procedures relevant
to Software

The current NASA Software Safety Standard is NASA-STD-8719.13b, dated July
8, 2004, which applies to all safety-critical software acquired or produced by NASA. By
reference this includes NASA Software Assurance Standard, NASA-STD-8739.8, dated
July 28, 2004. This in turn includes by reference NASA NPR 7150.2, Sept. 27, 2004. The
latter defines “Class A Human Rated Software Systems” as:

Applies to all space flight software subsystems (ground and flight)
developed and/or operated by or for NASA to support human activity in space
and that interact with NASA human space flight systems. Space flight system
design and associated risks to humans are evaluated over the program's life cycle,
including design, development, fabrication, processing, maintenance, launch,
recovery, and final disposal. Examples of Class A software for human rated space
flight include but are not limited to: guidance; navigation and control; life support
systems; crew escape; automated rendezvous and docking; failure detection,
isolation and recovery; and mission operations.
The classifications in NPR 7150.2 are important because, inter alia, the software

engineering requirements, including V&V, depend on the classification. ISHM software

is clearly Class A by this definition.
Figure 1 - Relationships Among Governing Software Documents (from NPR 7150.2)

NASA’s document NPR 7150.2, NASA Software Engineering Requirements,
“provides a common set of generic requirements for software created and acquired by or
for NASA...” Included in this document is a summary of the requirements with respect to
software created and acquired by NASA. Figure 1, taken from this NPR, shows the
relationships among the various relevant NASA requirements, policies, standards,
procedures and guidance.

The net result of these governing documents is an approach to V&V and
certification that has close parallels with those followed in other safety-critical
application areas. Indeed, NASA’s software working group is developing mappings
between the NASA Software Engineering Requirements, NPR 7150.2, and select
industry standards. A mapping to NASA’s Software Assurance Standard exists, and (at
the time of writing), mappings to the Software Engineering Institute’s Capability
Maturity Model Integration® (CMMI®), and to the Institute of Electrical and Electronics
Engineers standard IEEE 12207, are “currently under review”.

1.3 V&V for Spacecraft Fault Protection
Fault Protection software on existing NASA robotic spacecraft is a special case of

ISHM. In general, ISHM goes beyond such Fault Protection in two major aspects: the
need for reasoning, primarily as a consequence of the state-space explosion, and, in many
applications, the focus on maintaining capability rather than the simpler task of averting
catastrophe. Nevertheless, it is worth first considering how V&V is performed for Fault
Protection before turning attention to ISHM in general.

Ideally, the development process of a spacecraft’s Fault Protection would start
with a detailed fault tree/FMECA effort that produces a clear "fault set". A fault set it the
list of faults that the spacecraft or system might be subjected to that can then be
subdivided into a "protected fault set" and an "unprotected fault set". In order to establish
which is which, the project needs a clear definition of the project’s fault tolerance is
needed - is it to be single or dual fault tolerant? is the requirement to be fault tolerant or
failure tolerant? etc. Having this fault set early in the life of the mission would provide
the groundwork for the design and for risk trade offs as the hardware is selected. It would
also provide a basis for the amount of redundancy selected for the hardware. Once the
fault set is determined the fault injection requirements can be specified for the ground
support equipment to be used to test the hardware and software.

This would be the ideal approach – however, in practice, this rarely occurs in its
ideal form. As helpful as it would be to have the full fault set early in the mission, the
project often does not have resources to dedicate systems engineers to a thorough fault
tree and FMECA effort in early design. Usually, one gets either a fault tree or a FMECA
drafted. This means that in practice there is a initial fault set but it is often very partial.
The same is true of the fault injection requirements, which in practice, will in the initial
stages be only a partial set.

To mitigate this reality, the best way is to ensure that both the fault set
development and fault injection requirements identification are on-going processes with
milestones at PDR, CDR and individual Fault Protection reviews so that the process can
be kept somewhat current.

Finally, the FP testing process is itself constrained by project priorities. There is a
theoretical desire to begin FP testing early and have it stay in step with the other s/w and

h/w testing. However, in practice the Fault Protection testing starts out with low priority,
increasing as the overall testing program matures. Logic dictates that in a prioritized
environment, there is no need for fault protection testing until the core nominal h/w and
s/w is working. As the testing progresses and confidence in the nominal system matures,
then attention turns to the off-nominal cases in which fault protection plays a central role.

Fault Protection testing has the same three levels of V&V as the other areas. It
begins with – verifying the basic functionality of the fault protection software itself, that
is, the fault protection governing software and the monitors and responses. One of the
detailed methods used to accomplish this is to “enable” the monitors as soon as possible
after a flight software delivery to ensure maximum testing time of the ability to detect
errors. The remediation functions are exercised later in the test process as they become
available. This testing can range from basic fault testing to a more extreme “stress
testing” that involves cascading faults, envelope testing and heavy concurrent load testing.
The stress testing completes the triage of verifying requirements, validating capabilities
and then stress testing to find out where the system truly fails.

2 FEASIBILITY AND SUFFICIENCY OF EXISTING
SOFTWARE V&V PRACTICES FOR ISHM

In this section we consider whether the existing software development practices
can feasibly be applied as-is to ISHM systems, and whether those practices would
provide sufficient levels of confidence in ISHM systems.

2.1 Feasibility
NASA’s Human-Rating Certification process is defined in NPR 8705.2A

(effective date: 2/7/2005). The objective of the human-rating certification process is to
document that the critical engineering requirements, health requirements, and safety
requirements have been met for a space system that provides “maximum reasonable
assurance” that the system's failure will not result in a crew or passenger fatality or
permanent disability. This NPR covers numerous aspects of certification, including
certification of software. One of the software aspects covered is testing, where one
requirement is:

1.6.7.1 The Program Manager shall perform testing to verify and validate
the performance, security, and reliability of all critical software across the entire
performance envelope (or flight envelope) including mission functions, modes,
and transitions.
ISHM clearly contains “critical software” and hence is subject to this testing

requirement. However, the very nature of ISHM poses significant challenges to meeting
this requirement, above and beyond challenges shared by most forms of mission-critical
software. Specifically, ISHM, by definition, deals with off-nominal conditions in each of
its roles (it must recognize, diagnose and respond to: early indications of impending
failure, the presence of performance degradations, and failures that have occurred).
Several V&V challenges stem from this: it is hard to know that all the significant possible
failure modes have been identified (especially for relatively novel components and for
conventional components operating in novel conditions); for any given failure mode, its

characteristics may not be well understood; there is a large number of ways in which off-
nominal conditions can arise (consider all the parts that could fail, and the varying
implications of such failure depending on when in the mission it occurs), and the
combinations of such failures are vastly more numerous. For example, if there are 1,000
individual possible failures, then there are 1,000,000 pairs of such failures. This has
specific relevance to the feasibility of meeting fault tolerance requirements that may be
applicable. For example, another Human Rating requirement states:

Requirement 34419. Space systems shall be designed so that no two
failures result in crew or passenger fatality or permanent disability.
In more general terms, the challenges posed by ISHM systems is that it is hard to

assure completeness of models of failure, it is hard to assure that those models are
correct, and it is hard to test/inspect/review the very many failure scenarios. While any
given failure scenario may itself have a very low likelihood of occurrence, ISHM must be
prepared to deal correctly with whichever ones do manifest themselves in the course of
the mission, so V&V must address a large fraction of these to achieve the levels of
assurance required.

In response to these questions of feasibility, the response could be to evolve the
requirements, standards, etc. accordingly, or to leave them as-is and instead rely on
provisions for exceptions1, deviations2 and waivers3 from these requirements. In practice
waivers are common. Since they contradict the intent and effect of requirements, and
introduce inconsistencies in the certification process, it is preferable to recognize early-on
which requirements cannot be met, and revise these requirements as necessary to
preclude reliance upon waivers.

2.2 Sufficiency
Another question to ask of the existing standards is whether they are sufficient to

achieve the levels of assurance desired of ISHM systems.
We begin by noting that even the most stringent of the structural testing levels –

the Modified Condition Decision Coverage (MCDC), cannot fully test a realistic software
application. To do so would require “path” coverage, which is by no means guaranteed
by MCDC. In MCDC each condition is tested largely independently of other decisions in
the program, and in a program with n decision binary decision points there are 2n
independent decisions, each of which defines a possible path through the program. Of
these, the number that are “feasible” (that is, that can actually be executed by some
combination of input data values) is also on the order of 2n. Thus only a relatively small
portion of the possible execution paths are tested even under MCDC. For event-driven
(reactive) systems the situation is even worse. ISHM systems fall squarely into this
category. As described in the previous subsection, the number of possible behaviors can
be a huge number, the small proportion covered by MCDC would leave an even larger
number untested.

1 An exception to a requirement can be provided if that requirement is not applicable to every

component of the system.
2 A deviation from a requirement can be provided if the requirement cannot be met but there is an

alternative method of reducing system risk to an “equivalent or lower” level.
3 A waiver of a requirement may be requested if the requirement is unsatisfied and there is

therefore an increased risk.

Further challenges stem from the unusual structure of ISHM software as
compared to the more traditional forms of spacecraft software for which the standards,
etc., were crafted. ISHM software often makes use of Artificial Intelligence techniques,
and is architected accordingly. Specifically, such software typically has both a large,
complex “reasoning engine”, and “models” (e.g., a model might describe the operating
modes of the telecommunications system) over which that reasoning engine operates.

The implications for V&V are several:
• conventional approaches to certification, such as measures of code coverage

used to gauge the thoroughness of testing, do not take into account those
models. In conventional terms, the models would look like data, and typical
code coverage metrics would fail to capture the need for coverage of not only
the reasoning engine’s code, but also the data encoded within the models.

• the overall ISHM system’s behavior might be sensitive to small changes in
either of the reasoning engine itself (e.g., a small change to a heuristic might
lead to drastic changes in performance) or the models (a small change to a
model might push the reasoning engine into previously unexplored regimes of
behavior) – it is hard to extrapolate (and therefore hard to know how to test)
when and how these small changes will affect ISHM behavior

• the performance (run time, memory consumption, cpu utilization) of
reasoning engines themselves, because of their heuristic nature, is hard to
guarantee. If they are operating close to the computational “cliff” (where
performance degrades rapidly as the problem complexity increases only
slightly), they will exhibit occasional wild fluctuations from “normal” – for
many runs it may perform within expected bounds, but once in a while, the
performance is extremely poor (slow, huge memory usage, …).

ISHM must correctly report failure conditions, and, importantly, must avoid
“false alarms”. Both of these require that ISHM take as input uncertain data, and yield
information and decisions with high(er) certainty. E.g., ISHM needs to distinguish engine
failure from failure of the sensor(s) monitoring the engine’s health (those sensors are
fallible devices, and may themselves fail). The ISHM algorithms (and implementation
thereof) that perform its certainty-increasing process must be extremely reliable, since
they will be in continuous operation.

Lastly, many of the systems whose health ISHM is to manage will themselves
contain software. In such cases ISHM may be expected to be cognizant of the health of
those systems’ software. However, software “failure” does not completely parallel
hardware “failure” (software doesn’t “wear out”, rather, during operation a latent defect –
“bug” – in the software may become manifest in the particular execution path it follows),
so it is much less understood whether ISHM techniques can accommodate failure modes
that have their origin in latent software defects (predict them for prognosis purposes,
diagnose them once they have occurred, and in either case know what to do in response).

3 OPPORTUNITIES FOR EMERGING V&V TECHNIQUES
SUITED TO ISHM

The unusual nature of ISHM software raises both challenges for V&V and
certification (outlined in the previous section) and opportunities to make use of some new

and emerging V&V techniques that offer the promise of overcoming some of those key
challenges. This section describes the origins of those opportunities, and gives some
representative examples of emerging V&V techniques.

We have remarked on the prevalence of model-based reasoning within many
ISHM architectures. In order that ISHM can perform its reasoning (e.g., diagnose the
cause of a fault from a set of symptoms), those models are designed to be machine-
manipulable – by the ISHM reasoning engine itself. Fortuitously, there has been an
emergence of V&V techniques suited to various forms of analysis of such models.

Many of the emerging V&V techniques do their own reasoning – for V&V
purposes – over the same kinds of models that ISHM utilizes. The adoption of those
V&V techniques in traditional software settings has always been impeded by the need to
construct such models by hand, from the various forms of system documentation
intended for human, but not computer, perusal (e.g., requirements stated in paragraphs of
English). This has made them costly and time-consuming to use, and as a result their
application has, in practice, been limited to only the most critical core elements of
software and system designs (for an in-depth discussion, see [Rushby, 1993]). A
representative example drawn from the spacecraft fault protection domain is [Schneider
et al, 1998]’s use of “model checking” was applied to the checkpoint and rollback
scheme of a dually redundant spacecraft controller. In contrast, in ISHM such models are
machine manipulable, and available early in the lifecycle.

Another source of opportunity offered by model-based reasoning is that the
reasoning software can yield both its result (e.g., a diagnosis), and the chain of reasoning
that led to that result. That chain of reasoning provides opportunities for cross-checking –
not only checking that the result is correct, but also that it is correct for the right reasons
(e.g., all the appropriate information was taking into account when arriving at its
conclusion).

Lastly, we observe that the typical architecture of model-based ISHM divides the
system into a generic, and therefore reusable, reasoning engine, and system-specific
models. The reasoning engine itself is a non-trivial piece of software, and so the
correctness of its implementation needs to be checked. However, since it will be reused
from application to application, the effort it takes to check that implementation can be
amortized over those multiple applications.

The table below lists a sampling of the applicability of emerging V&V techniques
to ISHM V&V needs. Please note that this is not intended to be a comprehensive survey
of the field.

ISHM problem addressed V&V technology

Assuring the extremely high reliability of
ISHM’s core algorithms (e.g., voting
schemes), supportive implementations, etc.

“Formal methods” (a.k.a. “analytic
verification”): theorem proving and/or
model checking

Verifying key properties of ISHM models
and systems, and (to some extent) of their
implementations

“Formal methods” (a.k.a. “analytic
verification”) : theorem proving and/or
model checking

Achieving highly confidence in the
correctness of the implementation (coding)

Program synthesis

ISHM problem addressed V&V technology
step by “correct -by-construction” code
synthesis methods possibly coupled with
proof checking (significantly aided by
information left by the construction
process)
Assuring with extremely high confidence
the absence of software implementation
defects in ISHM software itself

Static analysis

Eliciting software and software-system
failure modes of ISHM’d systems

Risk analysis methods (SMFEA, SFTA)

Assessing ISHM’s reliability for the
software part of systems.

Probabilistic Risk Assessment (PRA) for
software systems

Recognizing symptoms of software defects
and, to some extent, the potential for
software defects (i.e., expanding the
confidence that can be gained from a single
test run, so in part helping to counter the
explosion of possible executions that ISHM
systems manifest).

Run-time monitoring

Assuring that the reasoning engine not only
reached the right conclusion, but did so for
the right reason (i.e., expanding the
confidence that can be gained from a single
test run, so in part helping to counter the
explosion of possible executions that ISHM
systems manifest).

Testing adapted to model-based systems

Improving (by inspection, review, etc) the
quality of the “models” on which ISHM
operates

Software development practices adapted
appropriately for models of model-based
software

4 V&V FOR CONSIDERATIONS FOR ISHM SENSORS AND
AVIONICS

Integrated System Health Management (ISHM) relies on information derived
from sensors by avionics (signal conditioning, data conversion and data processing
hardware) to assess the state of the system. The performance of the ISHM system is
dependent upon the fault coverage by the sensors embedded in the space vehicle. The
quality of data from the sensors and the overall reliability of the hardware of the ISHM
system are critical to ISHM performance. In addition to meeting functional requirements,
the ISHM system must be certified to operate reliably in the space environment.
Environmental requirements for certification will include launch vehicle dynamics
(vibration, shock and acoustic), thermal environments (orbital and re-entry),
electromagnetic compatibility, and radiation (primarily single-event effects, since man-
rated vehicles typically minimize exposure to trapped radiation environments).

ISHM Hardware Certification
Spaceflight hardware certification ensures that the ISHM hardware meets

specified design, manufacturing, life, and environmental requirements. For new hardware,
preliminary and critical design reviews are conducted to ensure that all basic safety,
reliability, and quality assurance requirements are met. A certification requirements
document identifies and defines the induced and natural environments and methodologies
used in the certification approach. Certification consists of qualification testing and
analysis at the highest practical level of assembly, installation, or system. Qualification
testing must consider functional, environmental, and life requirements. Certification may
be achieved by analysis when testing is not necessary, feasible, or cost-effective.

Spaceflight Hardware V&V
Spaceflight hardware is generally developed via a requirements-driven process

where the capabilities, performance specifications and physical characteristics are
developed within the constraints of mission resource allocations. High-level (system)
requirements are translated into lower-level requirements, ultimately resulting in
specifications that become the basis for hardware design. Validation is performed via
thorough requirements traces (upward and downward) to ensure correct requirements are
established at all levels. Throughout the hardware development, the compliance of the
hardware design with the requirements is verified early in design reviews and later, in the
hardware test program. Often a matrix is generated and maintained to track the
verification of the hardware against requirements on that hardware. A performance
baseline for verification of hardware functionality is established prior to subjecting the
hardware to a battery of environmental tests. Abbreviated functional testing is frequently
performed during the series of environmental tests (i.e. between vibration tests on each
axis of the hardware). Testing of payload or subsystem avionics hardware is generally
performed at the electronics box level prior to delivery to the space vehicle for integration.

System-level functional testing is often performed with engineering model or

prototype subsystem hardware early in the integration phase. Testbeds are frequently
employed to develop system-level functionality (command and data handling
subsystems). Flight hardware can be verified in testbeds that have the appropriate
interfaces and hardware protection. During integration of the space vehicle, flight
hardware subsystems are typically connected to the space vehicle power and data systems
via a “safe-to-mate” verification procedure. Pin-level verification of the interfaces are
performed through “break-out box” equipment until the unit being integrated has been
powered and proper communication is verified. Only then unit is directly mated to the
flight system connectors. After all of the flight hardware has been integrated, system-
level testing is completed. Robotic spacecraft typically undergo system-level
environmental testing (EMI/EMC, vibration, acoustic, system thermal-vacuum tests) to
verify system performance in simulated launch and space environments.

Sensor Data V&V
Due to the potentially large number of sensors, many of which are exposed to

harsh environments, the ISHM system must be tolerant of sensor faults. The processes for

the selection, qualification and installation of sensors are important factors for
minimizing sensor faults. An ISHM system should be able to validate sensor readings and
diagnose sensor faults in real-time. The area of Sensor Failure Detection, Isolation and
Accommodation (SFDIA) is being addressed by a several approaches.

There are two conceptually different approaches to the SFDIA problem: physical

and analytical redundancy. Traditional flight control systems deploy triple or quadruple
physical redundancy in their network of sensors to achieve the level of reliability
necessary for manned spacecraft or aircraft certification. Physical redundancy SFDIA
techniques are based on voting and mid-value selection schemes. It is clear that there are
penalties such as mass, power, volume, and cost associated with a physical redundancy
approach to the SFDIA problem.

Most of the current research activities on SFDIA focus on the use of analytical

redundancy techniques. A partial list of analytical SFDIA techniques includes
Generalized Likelihood Ratio (GLR); Multiple Model (MMKF), Extended, and Iterative
Extended Kalman Filtering (MMKF, EKF and IEKF); Sequential Probability Likelihood
Ratio Test (SPLRT), and Generalized Likelihood Test/Maximum Likelihood Detector
(GLT/MLD).These techniques feature a continuous monitoring of the measurements
from the sensors. At nominal conditions, these signals follow some known patterns with a
certain degree of uncertainty due to the presence of system and measurement noise.
However, when sensor failure occurs, the observable outputs deviate from the predicted
values calculated on-line or off-line from estimation scheme generating a residual. A
sensor failure can be declared when the associated residual exceeds, for a single or for
multiple, time instants, a certain numerical threshold.

Analytical redundancy and Bayesian decision theory was combined to produce a

sensor validation system concept for real-time monitoring of Space Shuttle Main Engine
telemetry.i The validation system, as illustrated in the block diagram below (Figure 1),
was implemented in Ada and hosted on a Boeing X-33 prototype flight computer (R3000
at 25 MHz). SSME telemetry was played back at real-time rate through the system at the
Marshall Avionics System Testbed (MAST). Data from 50 SSME flight firings were
processed at real-time rates and 3 sensor failures were correctly identified.

Figure 1. Block diagram for the real-time SSME sensor data validation concept

developed by Bickford, et al.

More recently, neural network (NN) approaches to sensor data validation have

been developed. As an example, data from a Boeing 737 was processed via a NN-based
on-line learning scheme.ii The Extended Back Propagation (EBP) algorithm was used by
the authors for the on-line learning. The algorithm was selected for its performance in
terms of learning speed, convergence time, and stability when compared to the
conventional Back Propagation (BP) algorithm. The SFDIA scheme is illustrated in the
block diagram shown in Figure 2. It consists of a main NN (MNN) and a set of ‘n’
decentralized NNs (DNNs), where ‘n’ is the number of the sensors in the flight control
system for which a SFDIA is desired. The outputs of the MNN replicate, through on-line
prediction, the actual measurements from the ‘n’ sensors with one time instant delay, that
is a prediction of the state at time ‘k’ using measurements from ‘k-l’ to ‘k-p’ to be
compared with the actual measurement at time ‘k’. In their study, the authors processed
flight data obtained from about 10,000 seconds of B737 flight recorder data to train the
MNN and DNNs. Simulated sensor failures were injected to test the response of the NN.
They were able to demonstrate rapid on-line learning and proper identification of a
variety of sensor failures both hard (complete sensor signal loss) and soft (drift) and to
have the failed sensor data accommodated by the physical model adapted by the on-line
learning process.

 Figure 2. Block diagram of NN SFDIA scheme showing result of a failure in

Sensor #1.

5 SUMMARY

It is apparent that a combination of several V&V approaches will be required for
ISHM. For example, depending on the ISHM architecture, traditional testing approaches
may be adequate and appropriate for some layers of ISHM functionality, whereas the use
of AI techniques such as reasoning under uncertainty and mission planning (and re-
planning) have characteristics that set them apart and challenge standard V&V techniques.
Most notably, AI techniques based on explicit use of model-based reasoning exhibit
algorithmic and implementation intricacies (within their AI reasoners themselves) on a
par with other complex software systems, but in addition the behaviors they may exhibit
during operation depend critically on the models themselves (elements that traditional
V&V has not had to deal with). Fortuitously, the additional V&V challenges their model-
based nature gives rise to are balanced by the enhanced opportunities to apply certain
V&V techniques, especially those based on analytic methods.

The function of ISHM is to increase the reliability of the system whose health it
manages. To do this, ISHM must, in the vast majority of cases, correctly ascertain the
status of the system, despite the fallibility of both the system itself and also the sensors
that monitor the status of the system. Thus the reliability of the ISHM’s core functionality
(e.g., its voting algorithms that adjudicate among multiple – some possibly erroneous –
readings from multiple sensors) must be among the most reliable software systems on the
entire vehicle. These considerations, coupled with the non-traditional architecture that
many ISHM systems employ (notably model-based reasoning), call into question both the
feasibility and adequacy of existing standards, practices, etc., for V&V and certification if
they are to encompass ISHM. Overall, therefore it is necessary to modify V&V and
certification requirements to permit its use, to find the right mix of V&V and certification
to match the architecture of the vehicle and ISHM system, and to guide the maturation of
emerging V&V techniques to become capable of this function.

6 ACKNOWLEDGMENT

The research described in this paper was carried out by NASA Ames Research
Center, NASA Stennis Space Center, and the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
administration. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

7 REFERENCES

(Schad) Johnson, L., “DO-178B, "Software Considerations in Airborne Systems
and Equipment Certification",” October 1998, available at:
http://www.stsc.hill.af.mil/crosstalk/1998/10/schad.asp

[Rushby, 1993] “Formal Methods and the Certification of Critical Systems”
Technical Report CSL-93-7, Dec 1993, SRI International, Menlo Park, CA.

http://www.stsc.hill.af.mil/crosstalk/1998/10/schad.asp

[Schneider et al, 1998] Schneider, F., Easterbrook, S.M., Callahan, J.R. &
Holzmann, G.J. “Validating requirements for fault tolerant systems using model
checking”, 3rd Int. Conf. on Requirements Engineering, 6-10 Apr 1998, pp 4-13.

i Bickford, R.L., Bickmore, T.W., Meyer, C.M., Zakrajsek, J.F., “Real-Time Sensor Data

Validation for Space Shuttle Main Engine Telemetry Monitoring”, AIAA-1999-2531, 35th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, 20-24 June
1999.

ii Napolitano,M., An, Y., Seanor, B., Pispitsos, S., and Martinelli, D., “Application of a Neural
Sensor Validation Scheme to Actual Boeing 737 Flight Data”, AIAA‐1999‐4236, AIAA Guidance,
Navigation, and Control Conference and Exhibit, Portland, OR, Aug. 9‐11, 1999

	EXISTING SOFTWARE V&V AND CERTIFICATION PRACTICES
	Avionics V&V and Certification
	NASA Requirements, Policies, Standards and Procedures releva
	V&V for Spacecraft Fault Protection

	FEASIBILITY AND SUFFICIENCY OF EXISTING SOFTWARE V&V PRACTIC
	Feasibility
	Sufficiency

	OPPORTUNITIES FOR EMERGING V&V TECHNIQUES SUITED TO ISHM
	V&V FOR CONSIDERATIONS FOR ISHM SENSORS AND AVIONICS
	SUMMARY
	ACKNOWLEDGMENT
	REFERENCES

